The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1  1  X  1  3  1  1  1 2X  1  1  1 2X  1  1  X  1  1  1  1  0  1  1 2X+3  X  1 X+3  1  1  1  1  1  1  1 2X  6  3  1 X+6 X+6  1  1  1 2X+6  X  1 2X  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+3 2X+1  1 X+2  1  8  7  3  1 X+5 X+7 2X+2  1 2X+2 2X+6  1  0 2X X+8 2X+5 2X+6 2X+1 X+4  1  1 X+1 X+6 X+6  1  5  3 2X 2X+1 2X+6 2X  1  1 X+6  1  1 X+3 2X+8 X+7  1  1 X+2  X X+6 X+1
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+2 2X+4 X+1  8 2X X+3  2 X+7 2X+2  4  7  5  5 2X+6 X+4 X+8 X+6  0 X+3 X+8  1  2 X+7  3 X+6 2X  1 X+3  X  8 X+2 2X+6 2X+3 X+8  1 X+7 X+3 2X+4  0 2X+8  5 2X+7 2X+1 X+3  4 X+7  1 X+6 X+6

generates a code of length 66 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 126.

Homogenous weight enumerator: w(x)=1x^0+806x^126+1242x^127+1872x^128+2116x^129+2070x^130+1500x^131+1850x^132+1356x^133+1302x^134+1624x^135+1296x^136+972x^137+800x^138+456x^139+180x^140+158x^141+54x^142+8x^144+6x^145+6x^146+6x^147+2x^150

The gray image is a code over GF(3) with n=594, k=9 and d=378.
This code was found by Heurico 1.16 in 0.943 seconds.